Cardiorespiratory Model-Based Data-Driven Approach for Sleep Apnea Detection
نویسندگان
چکیده
منابع مشابه
An Improved Approach for Real-time Detection of Sleep Apnea
The traditional diagnosis of sleep apnea and hypopnea syndrome (SAHS) requires an expensive and complex overnight procedure called polysomnography (PSG). Recently, finding valid alternatives for SAHS diagnosis has attracted much research attention. This paper focuses on the real-time monitoring and detection of SAHS based on the arterial oxygen saturation signal measured by pulse oximetry (SpO2...
متن کاملHHT based cardiopulmonary coupling analysis for sleep apnea detection.
STUDY OBJECTIVES To validate the feasibility of the Hilbert-Huang transform (HHT) based cardiopulmonary coupling (CPC) technique in respiratory events detection and estimation of the severity of apnea/hypopnea. METHODS The HHT-CPC sleep spectrogram technique was applied to a total of 69 single-lead ECG signals downloaded from the Physionet Sleep Apnea Database. Sleep spectrograms generated by...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولAn NN Based Feature Analysis Model for Sleep Apnea Identification
ECG signal is able to identify different kind of heart disease. One of the critical heart problem is the abnormal heart beat behavior during sleep. This problem is recognized as sleep apnea. In this work, a feature adaptive model is presented for Sleep apnea identification. To generate the effective signal features, the spectral subtraction and DWT methods are applied at earlier phase. After ge...
متن کاملTemporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks
The spatial-temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs). Most of the existing works based on the spatial-temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS) and spati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Biomedical and Health Informatics
سال: 2018
ISSN: 2168-2194,2168-2208
DOI: 10.1109/jbhi.2017.2740120